課 程 概 述
Course Description

課程編碼
Course Code
中文課程名稱
Course Name (Chinese)
英文課程名稱
Course Name (English)
總學分數
Credits
總時數
Hours
3615053 深度強化學習 Deep Reinforcement Learning 3.0 3
中文概述
Chinese Description
課程主要為介紹深度強化學習的理論基礎,了解AlphaGo背後的原理,和目前學術界最新的研究成果。並教導學員使用最新的Python深度學習套件來訓練機器自主學習。課程內容包括: 1.強化學習簡介 2.有限馬可夫決策過程 3.蒙地卡羅法 4.時序差分學習 5.Deep Q-Networks (DQN) 6.OpenAI Gym 7.Actor-Critic方法 (A3C & A2C) 8.信賴區域(Trust Regions) – TRPO, PPO與ACKTR
英文概述
English Description
The goal of this course is to introduce fundamental theories behind deep reinfocement learning and summarize the state-of-the-art research results. We will also teach how to use Python deep learning framework (TensorFlow & PyTorch) and demonstrate how to train software agents to learn different tasks. The content includes: 1.Introduction to Reinforcement Learning 2.Finite Markov Decision Processes 3.Monte Carlo Methods 4.Temporal-Difference Learning 5.Deep Q-Networks (DQN) 6.OpenAI Gym 7.Actor-Critic Methods (A3C & A2C) 8.Trust Regions – TRPO, PPO and ACKTR

備註:

  1. 本資料係由本校各教學單位、教務處課務組、進修部教務組、進修學院教務組及計網中心所共同提供!
  2. 本資料僅供參考,正式資料仍以教務處、進修部、進修學院所公佈之書面資料為準。